Math 3670
Probability and Statistics with Applications
Summer 2019

Catalog Description
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance.

Prerequisites
MATH 2401 or MATH 24X1 or MATH 2411 or MATH 2551 or MATH 2550 or MATH 2X51.

Textbook

Instructor
Dr. Alexandre Locquet, Office 206.
Communication: Please send me messages using Canvas only. ("Inbox" tab on your dashboard)

Lectures
Every day, 3:30pm-4:30pm.

Office hours
TBD, Office 206. Please send me a message me through Canvas if you want to schedule an appointment.

Attendance
Attendance is worth 1.5%. Attendance Polling using Turning Point Technology and/or attendance sheets will be used to count the number of absences. Students need to install the TurningPoint app on a mobile device and bring their mobile device to class. As a Georgia Tech student, installation and use of the app is free. In the TurningPoint settings, you need to set your region to "North/South America" and not to Europe. Students who do not miss more than 2 lectures during the entire term get 1.5% for attendance. Students who miss more than 2 classes get 0% for attendance. Students who do not miss any class get a 0.5% attendance bonus. Illness is the only acceptable reason for missing a lecture, but you will need to produce a doctor's note (not a prescription) stating that you are not able to attend the lecture.

In-Lecture Polling
Students will be asked to answer questions during some lectures, using the Turning Point app. Students who will have correctly answered at least 80% of all questions asked get a 1% bonus.
Grading Policy

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>3.5%</td>
</tr>
<tr>
<td>Quiz 1 (90 mins)</td>
<td>30%</td>
</tr>
<tr>
<td>Quiz 2 (90 mins)</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam (3 hours)</td>
<td>35%</td>
</tr>
<tr>
<td>Attendance</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

The quizzes and the final examination will be closed-book and notes. The use of a calculator will be allowed. Any request for regrading a quiz must be made to the instructor within one week of getting the homework/quiz back. **There will be no make-up quizzes for any reason.** If you have an acceptable reason for missing a quiz, the weight associated to the quiz will be transferred to the Final Exam. Illness is an acceptable reason for missing a quiz, but you will need to produce a doctor’s note (not a prescription) stating that you are not able to take the quiz. A make-up final exam may be scheduled only for medical reasons documented by a doctor’s note (not a prescription).

Important Dates

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz 1</td>
<td>TBD</td>
</tr>
<tr>
<td>Quiz 2</td>
<td>TBD</td>
</tr>
<tr>
<td>Final Exam</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Homework

Problems will be assigned roughly once every 1 or 2 weeks. **Homework should be submitted electronically on Canvas as a single, legible, pdf file.** The submission time on Canvas will be used to determine whether a homework is submitted on time or not: no exceptions will be made. A completion grade will be assigned. If a given homework 1) has been submitted on time and 2) every problem is answered, the student gets 0.5% credit. **If at least one of the conditions above is not satisfied, 0% credit will be assigned.** Specifically, if a homework is turned in late, 0% credit will be assigned to that homework. Illness is the only acceptable reason for turning in a homework late, but you will need to produce a doctor’s note (not a prescription) stating that you are not able to do the homework.

Student-Faculty Expectations Agreement

At Georgia Tech we believe that it is important to strive for an atmosphere of mutual respect, acknowledgement, and responsibility between faculty members and the student body. See http://www.catalog.gatech.edu/rules/22/ for an articulation of some basic expectation that you can have of me and that I have of you. In the end, simple respect for knowledge, hard work, and cordial interactions will help build the environment we seek. Therefore, I encourage you to remain committed to the ideals of Georgia Tech while in this class.
Honor Code

Students are, of course, expected to abide by the [Georgia Tech Honor Code](#). Instances of academic misconduct will be viewed very seriously and reported to the Dean of Students.

Feedback

Anonymous feedback can be provided to the instructor using the link below:

https://docs.google.com/forms/d/e/1FAIpQLSeCdgnMWhYMXHMNUJUlwcPd706nBW9NWaFkh4AehA2Dp_1tfw/viewform?usp=sf_link

You are also encouraged to fill in the course-instructor opinion survey (CIOS).
Tentative Table of Contents

I. Probability Basics.
1. Introduction
 1.1 Origin of uncertainty
 1.2 Probability versus Statistics
2. Basic Definitions
3. Sets and Set Operations
4. Axiomatic Definition of Probability
 4.1 A Special Case: the Simple Sample Space
5. Conditional Probability
 5.1 Probability of Event Intersections
 5.2 Independence of Events
6. Bayes' Theorem
7. Counting Techniques
 7.1 Multiplication Rule
 7.2 Permutations
 7.3 Combinations
II. Random Variables

Textbook: chapters 3 (continuous) and 4 (discrete)

II.1 Introduction and Basic Definitions
II.2 Discrete Random Variables Text: 3.2
II.3 The Cumulative Distribution Function Text: 3.2
II.4 Continuous Random Variables Text: 4.1, 4.2
II.5 Expectation and Variance of a Random Variable Text: 3.3, 4.2
 5.1 Expectation
 5.2 Median
 5.3 Variance and Standard Deviation
 5.4 Moments of a Random Variable
II.6 Famous Discrete Random Variables
 6.1 Bernoulli Distribution
 6.2 Binomial Distribution Text: 3.4
 6.3 Geometric Distribution Text: 3.5
 6.4 Poisson Distribution Text: 3.6
 6.4.1 Introduction: Poisson Process
 6.4.2 Poisson Random Variable
II.7 Famous Discrete Random Variables
 7.1 Uniform Distribution
 7.2 Exponential Distribution Text: 4.4
 7.2.1 Definition
 7.2.2 Memoryless Property of the Exponential Distribution
 7.2.3 Link with the Poisson Process
 7.3 The Normal (or Gaussian) Distribution Text: 4.3
 7.3.1 Definition
III Pairs of Random Variables and Combinations of Random Variables

III.1 Pairs of Random Variables
1.1 Discrete case
1.2 Continuous Case
1.3 Independence of 2 Random Variables
1.4 Covariance and Correlation Coefficient

III.2 Linear Combinations of Random Variable and the Central Limit Theorem
2.1 Linear Function of a Single Random Variable
2.2 Linear Combination of Random Variables
2.3 The Central Limit Theorem

IV Statistics

IV.1 Introduction

IV.2 Descriptive Statistics
2.1 Data Grouping
2.2 Charts
2.3 Sample Statistics
a) Measures of Central Tendency
b) Measures of Spread

IV.3 Point Estimation
3.1 Introduction to estimation
3.2 Desired properties of an estimator
 a) Unbiased Estimator
 b) Minimum-Variance Estimates

IV.4 Confidence Intervals Text: 7
4.1 Introduction to Confidence Intervals Text: 7.1
4.2 Confidence Interval for the Population Mean- Variance Known Text: 7.2
4.3 Confidence Interval for the difference of two means- variances known Text: 9.1
4.4 Confidence Interval for the mean of a normal population of unknown variance Text: 7.3
4.5 CI’s for the difference of two means- variances unknown and equal Text: 9.2
4.6 Confidence Interval Variance of a Normal Population Text: 7.4

IV.5 Hypothesis Testing Text: 8
5.1 Introduction Text: 8.1
5.2 Normal Mean Tests-Variance Known Text: 8.2
 5.2.1 Two-Sided Tests
 5.2.2 One-Sided Tests
5.3 Normal Mean Tests-Variance Unknown Text: 8.3
5.4 Normal Variance Tests
5.5 Hypothesis tests on the difference between two means – variances known Text: 9.1
5.6 Hypothesis tests on the difference between two normal means – variances unknown and equal Text: 9.2
5.7 Hypothesis tests on the difference between two normal means – variances unknown and different Text: 9.2
5.8 Hypothesis tests on the variances of two
normal populations Text: 9.5